Exoplaneta
Las estrellas cercanas a los planetas revelan y confirman datos importantes en la búsqueda de vida en el universo. | Fuente: Europa Press 2021 | Fotógrafo: NASA

Un cohete sonda de la NASA observará una estrella cercana para aprender cómo la luz de las estrellas afecta las atmósferas de los exoplanetas, información clave en la búsqueda de vida en el cosmos.

Utilizando un instrumento actualizado lanzado por primera vez en 2019, la misión tiene un nuevo objetivo: Procyon A, la estrella más brillante de la constelación de Canis Minor.

SISTINE-2 (Suborbital Imaging Spectrograph for Transition region Irradiance from Nearby Exoplanet host stars), tendrá su primera oportunidad de ser lanzada desde el campo de misiles White Sands en Nuevo México el 8 de noviembre.

Responder a la pregunta de si existe vida en otras partes del universo está plagado de desafíos técnicos. Todavía no podemos viajar a planetas alrededor de otras estrellas, llamados exoplanetas, para verlo por nosotros mismos. Nuestros telescopios tampoco son lo suficientemente potentes para ver sus superficies.

En cambio, los astrónomos miran a la atmósfera de un exoplaneta, en busca de rastros de sustancias químicas asociadas con la vida. El agua, el metano, el oxígeno, el ozono y otros llamados biomarcadores producen patrones de luz únicos que los telescopios pueden detectar desde lejos. Pero para interpretarlos correctamente, los astrónomos deben mirar a la estrella del planeta.

"La interacción entre la atmósfera del planeta y la luz ultravioleta de la estrella anfitriona determina qué gases sirven como los mejores biomarcadores", afirma en un comunicado Kevin France, astrofísico de la Universidad de Colorado Boulder e investigador principal de la misión.

Algunas longitudes de onda ultravioleta (UV), por ejemplo, pueden descomponer el dióxido de carbono, liberando un solo átomo de oxígeno para que se combine con otros y forme oxígeno molecular (compuesto por dos átomos de oxígeno) u ozono (compuesto por tres). Las estrellas que arrojan suficiente luz pueden crear biomarcadores espurios en sus planetas, enviando a los astrónomos a buscar en los lugares equivocados.

El equipo de SISTINE tiene como objetivo evitar este dilema creando una guía de las longitudes de onda que emite cada tipo de estrella. Hay muchos tipos diferentes de estrellas y todavía no tenemos una imagen completa de su salida de luz o cómo varía con el tiempo. Con un catálogo de luz estelar, los científicos podrían estimar si un biomarcador detectado es un signo potencial de vida o una señal falsa generada por la molesta luz estelar.

En su próximo vuelo, SISTINE-2 observará Procyon A, a unos 11,5 años luz de distancia. Procyon A es una estrella de tipo F, que es un poco más grande, más caliente y más brillante que nuestro Sol. Aunque no tiene exoplanetas conocidos, estudiar Procyon A puede ayudarnos a comprender las estrellas de tipo F y sus exoplanetas en todo el universo.

"Conocer los espectros ultravioleta de estas estrellas nos ayudará a encontrar los entornos estelares-planetarios más prometedores con los futuros observatorios de la NASA", dijo France.

SISTINE-2 comprende un telescopio y un instrumento conocido como espectrógrafo, que divide la luz en sus colores separados. SISTINE-2 se centrará en la luz ultravioleta de 100 a 160 nanómetros, un rango que incluye longitudes de onda conocidas por producir biomarcadores falsos positivos. Al combinar sus datos con observaciones existentes de rayos X, ultravioleta extrema y luz visible de otras estrellas de tipo F, el equipo espera ensamblar un espectro de referencia que ayude a los astrónomos a interpretar biomarcadores en exoplanetas que orbitan estrellas de tipo F.

SISTINE-2 también está probando hardware. Antes de su vuelo de 2019, el equipo aplicó un recubrimiento óptico mejorado de fluoruro de litio a los espejos del instrumento para mejorar su reflectividad UV. Los resultados, unos tres años después, ayudan a evaluar si este recubrimiento especializado puede ser adecuado para misiones espaciales más grandes y de mayor duración.

Cinco minutos de misión

Al igual que en su vuelo de 2019, el instrumento se lanzará en un cohete sonda, un pequeño cohete suborbital que hace breves observaciones en el espacio antes de volver a caer a la Tierra. Ascendiendo a una altitud estimada de aproximadamente 280 kilómetros para acceder a la luz ultravioleta que de otro modo sería absorbida por nuestra atmósfera, SISTINE-2 observará Procyon A durante unos cinco minutos. El instrumento luego volverá a caer a la Tierra, descendiendo en paracaídas para su recuperación y restauración.

El equipo espera un aterrizaje suave para ayudar en un cambio rápido para estar listo para su tercer lanzamiento en julio de 2022, desde el Centro Espacial de Arnhem en Nhulunbuy, Australia. Allí, un instrumento SISTINE reacondicionado observará estrellas Alfa Centauri A y B, tipo G y K, respectivamente, similares y ligeramente más frías que nuestro Sol, y las estrellas más cercanas a nosotros.

Este sistema también alberga a Proxima Centauri, una fría estrella enana roja orbitada por el exoplaneta conocido más cercano, Proxima B. Estas observaciones agregarán entradas adicionales al creciente catálogo de estrellas: pasos pequeños pero críticos en la búsqueda de vida.

Con información de Europa Press

Te recomendamos METADATA, el podcast de tecnología de RPP. Noticias, análisis, reseñas, recomendaciones y todo lo que debes saber sobre el mundo tecnológico. Para escucharlo mejor, #QuedateEnCasa.