Buscar
RPP Noticias
Estás escuchando En vivo
 
00:00 / 00:00
Lima
89.7 FM /730 AM
Arequipa
102.3 FM / 1170 AM
Chiclayo
96.7 FM / 870 AM
Huancayo
97.3 FM / 1140 AM
Trujillo
90.9 FM / 790 AM
Piura
103.3 FM / 920 AM
Cusco
93.3 FM
Cajamarca
100.7 FM / 1130 AM
La información más relevante de la actualidad al momento
Actualizado hace 0 minutos
Entrevistas ADN
Gobierno peruano considera a Edmundo González como el presidente electo de Venezuela
EP 1772 • 24:39
El comentario económico del día
Impacto e implicancias de la creación de 20 nuevas universidades por el Congreso
EP 427 • 04:38
Reflexiones del evangelio
Lunes 30 de diciembre | "Y cuando cumplieron todo lo que prescribía la ley del Señor, se volvieron a Galilea, a su ciudad de Nazaret"
EP 862 • 12:00

Científicos producen un procesador cuántico a gran escala hecho solo de luz láser

Estructura entrelazada de un procesador cuántico a gran escala hecho de luz.
Estructura entrelazada de un procesador cuántico a gran escala hecho de luz. | Fuente: SHOTA YOKOYAMA 2019

Basado en un diseño de diez años de fabricación, el procesador tiene escalabilidad incorporada que permite que el número de componentes cuánticos escale a números extremos. 

Todas las noticias en tu celular
¡Únete aquí a nuestro canal de WhatsApp!

Un equipo internacional de científicos de Australia, Japón y Estados Unidos ha producido un prototipo de un procesador cuántico a gran escala hecho de luz láser.

Basado en un diseño de diez años de fabricación, el procesador tiene escalabilidad incorporada que permite que el número de componentes cuánticos, hechos de luz, escale a números extremos. La investigación fue publicada en Science.

Las computadoras cuánticas prometen soluciones rápidas a problemas difíciles, pero para hacer esto requieren una gran cantidad de componentes cuánticos y deben estar relativamente libres de errores. Los procesadores cuánticos actuales siguen siendo pequeños y propensos a errores. Este nuevo diseño proporciona una solución alternativa, usando luz, para alcanzar la escala requerida para eventualmente superar a las computadoras clásicas en problemas importantes, según los investigadores.

"Si bien los procesadores cuánticos actuales son impresionantes, no está claro si los diseños actuales se pueden ampliar a tamaños extremadamente grandes", señala en un comunicado Nicolas Menicucci, investigador jefe del Centro de Tecnología de Computación y Comunicación Cuántica (CQC2T) de la Universidad RMIT en Melbourne, Australia

"Nuestro enfoque comienza con una escalabilidad extrema, incorporada desde el principio, porque el procesador, llamado estado de clúster, está hecho de la luz".

Un estado de clúster es una gran colección de componentes cuánticos entrelazados que realizan cálculos cuánticos cuando se miden de una manera particular.

"Para ser útil para problemas del mundo real, un estado de clúster debe ser lo suficientemente grande y tener la estructura de enredo correcta. En las dos décadas desde que se propusieron, todas las demostraciones anteriores de estados de clúster han fallado en uno o ambos de estos conteos", dice Menicucci. "El nuestro es el primero en tener éxito en ambos".

Para hacer el estado de agrupación, los cristales especialmente diseñados convierten la luz láser ordinaria en un tipo de luz cuántica llamada luz comprimida, que luego es tejida en un estado de agrupación por una red de espejos, divisores de haz y fibras ópticas.

El diseño del equipo permite que un experimento relativamente pequeño genere un inmenso estado de clúster bidimensional con escalabilidad incorporada. Aunque los niveles de compresión, una medida de calidad, son actualmente demasiado bajos para resolver problemas prácticos, el diseño es compatible con enfoques para Alcanzar niveles de compresión de vanguardia.

El equipo dice que su logro abre nuevas posibilidades para la computación cuántica con luz. "En este trabajo, por primera vez en cualquier sistema, hemos creado un estado de clúster a gran escala cuya estructura permite la computación cuántica universal", dice Hidehiro Yonezawa, investigador jefe del CQC2T en UNSW Canberra. "Nuestro experimento demuestra que este diseño es factible y escalable".

Europa Press

Tags

Lo último en Actualidad

Lo más leído

Suscribirte al boletín de tus noticias preferidas

Suscríbete a nuestros boletines y actualiza tus preferencias

Buzon
Al suscribirte, aceptas nuestras políticas de privacidad

Contenido promocionado

Taboola
SIGUIENTE NOTA