Buscar
RPP Noticias
Estás escuchando En vivo
 
00:00 / 00:00
Lima
89.7 FM /730 AM
Arequipa
102.3 FM / 1170 AM
Chiclayo
96.7 FM / 870 AM
Huancayo
97.3 FM / 1140 AM
Trujillo
90.9 FM / 790 AM
Piura
103.3 FM / 920 AM
Cusco
93.3 FM
Cajamarca
100.7 FM / 1130 AM
La información más relevante de la actualidad al momento
Actualizado hace 0 minutos
Informes RPP
A menos de tres meses para cerrar el año, solo se ha ejecutado el 57% del presupuesto para la inversión pública
EP 1201 • 05:37
Reflexiones del evangelio
Martes 29 de octubre | (Santos Simón y Judas) - "Venían a oírlo y a que los curara de sus enfermedades; los atormentados por espíritus inmundos quedaban curados"
EP 800 • 12:23
Entrevistas ADN
Disolución del Movadef es un avance pero no el paso definitivo contra Sendero Luminoso, dijo Pedro Yaranga
EP 1739 • 16:37

Descubren la primera estrella “fallida" gracias a observaciones de radio

Impresión artística del descubrimiento apodado Elegast. Los bucles azules representan las líneas del campo magnético
Impresión artística del descubrimiento apodado Elegast. Los bucles azules representan las líneas del campo magnético | Fuente: Europa Press 2020 | Fotógrafo: ASTRON/DANIELLE FUTSELAAR

Las enanas marrones frías solo habían sido descubiertas hasta la fecha por estudios infrarrojos en el universo.

Todas las noticias en tu celular
¡Únete aquí a nuestro canal de WhatsApp!

Por primera vez, los astrónomos han utilizado observaciones de un radiotelescopio para descubrir una enana marrón fría, también conocida como "superplaneta" o "estrella fallida".

El descubrimiento, designado BDR J1750 + 3809, es el primer objeto subestelar detectado a través de observaciones de radio; hasta ahora, las enanas marrones se han encontrado en gran medida a partir de estudios del cielo infrarrojo.

BDR J1750 + 3809 (apodado "Elegast" por el equipo de descubrimiento) se identificó por primera vez utilizando datos del telescopio Low-Frequency Array (LOFAR) en Europa, y luego se confirmó utilizando telescopios en la cima de Maunakea, a saber, el Observatorio Internacional Gemini y el Instalación del Telescopio Infrarrojo de la NASA (que es operada por la Universidad de Hawai UH).

El descubrimiento directo de estos objetos con radiotelescopios sensibles como LOFAR es un avance significativo, porque demuestra que los astrónomos pueden detectar objetos que son demasiado fríos y débiles para ser encontrados en estudios infrarrojos, y quizás incluso detectar exoplanetas gigantes gaseosos que flotan libremente.

La investigación se publica en The Astrophysical Journal Letters. El astrónomo Michael Liu y el estudiante de posgrado Zhoujian Zhang del Instituto de Astronomía de la UH (IfA) fueron coautores del artículo. "Este trabajo abre un método completamente nuevo para encontrar los objetos más fríos flotando en las cercanías del Sol, que de otro modo serían demasiado débiles para descubrir con los métodos utilizados durante los últimos 25 años", dijo Liu.

Las enanas marrones se encuentran a horcajadas en el límite entre los planetas más grandes y las estrellas más pequeñas. Ocasionalmente denominadas "estrellas fallidas", las enanas marrones carecen de la masa para desencadenar la fusión de hidrógeno en sus núcleos y, en cambio, brillan en longitudes de onda infrarrojas con el calor sobrante de su formación. También denominadas "superplanetas", las enanas marrones poseen atmósferas gaseosas que se asemejan a los planetas gigantes gaseosos de nuestro sistema solar más que a cualquier estrella.

Si bien las enanas marrones carecen de las reacciones de fusión que mantienen al Sol brillando, pueden emitir luz en longitudes de onda de radio. El proceso subyacente que alimenta esta emisión de radio es familiar, ya que también ocurre en el planeta más grande del Sistema Solar. El poderoso campo magnético de Júpiter acelera las partículas cargadas como los electrones, que a su vez producen radiación, en este caso ondas de radio y auroras.

El hecho de que las enanas marrones sean emisoras de radio permitió la colaboración internacional de los astrónomos detrás de este resultado para desarrollar una nueva estrategia de observación. Las emisiones de radio se han detectado previamente de solo un puñado de enanas marrones frías, que fueron descubiertas y catalogadas por estudios infrarrojos antes de ser observadas con radiotelescopios. El equipo decidió cambiar esta estrategia, utilizando un radiotelescopio sensible para descubrir fuentes de radio frías y débiles y luego realizar observaciones infrarrojas de seguimiento con telescopios de Maunakea para clasificarlas.

"Nos preguntamos: '¿Por qué apuntar nuestro radiotelescopio a las enanas marrones catalogadas?'", Dijo Harish Vedantham, autor principal del estudio y astrónomo de ASTRON en los Países Bajos. "Hagamos una imagen grande del cielo y descubramos estos objetos directamente en señales de radio".

Además de ser un resultado emocionante por derecho propio, el descubrimiento de BDR J1750 + 3809 podría proporcionar una visión tentadora de un futuro en el que los astrónomos puedan medir las propiedades de los campos magnéticos de los exoplanetas. Las enanas marrones frías son las cosas más cercanas a los exoplanetas que los astrónomos pueden detectar actualmente con radiotelescopios, y este descubrimiento podría usarse para probar teorías que predicen la fuerza del campo magnético de los exoplanetas. Los campos magnéticos son un factor importante para determinar las propiedades atmosféricas y la evolución a largo plazo de los exoplanetas.

Habiendo encontrado una variedad de firmas de radio reveladoras en sus observaciones, el equipo tuvo que distinguir las fuentes potencialmente interesantes de las galaxias de fondo. Para hacerlo, buscaron una forma especial de ondas de radio polarizadas circularmente, una característica de la luz de las estrellas, planetas y enanas marrones, pero no de las galaxias de fondo. Habiendo encontrado una fuente de radio polarizada circularmente, el equipo recurrió a imágenes de archivo, el Telescopio Gemini-Norte y el IRTF de la NASA para proporcionar las medidas necesarias para identificar su descubrimiento.

El IRTF de la NASA está equipado con un espectrómetro sensible, SpeX, que ha sido un caballo de batalla para el estudio de las enanas marrones durante los últimos 20 años, incluida una actualización hace cinco años financiada por la National Science Foundation. El equipo utilizó SpeX para obtener un espectro de BDR J1750 + 3809, que reveló la firma característica del metano en la atmósfera. El metano es el sello distintivo de las enanas marrones más frías, y también abunda en las atmósferas de los planetas gigantes gaseosos de nuestro sistema solar.

"Estas observaciones realmente resaltan la mayor eficiencia de SpeX luego de su actualización financiada por la NSF con sistemas electrónicos y de infrarrojos de última generación en 2015", dijo John Rayner, director de IRTF y astrónomo de la UH IfA.

(Con información de Europa Press)

Te recomendamos METADATA, el podcast de tecnología de RPP. Noticias, análisis, reseñas, recomendaciones y todo lo que debes saber sobre el mundo tecnológico que gira más rápido que éste.

Tags

Lo último en Espacio

Lo más leído

Suscribirte al boletín de tus noticias preferidas

Suscríbete a nuestros boletines y actualiza tus preferencias

Buzon
Al suscribirte, aceptas nuestras políticas de privacidad

Contenido promocionado

Taboola
SIGUIENTE NOTA