Buscar
RPP Noticias
Estás escuchando En vivo
 
00:00 / 00:00
Lima
89.7 FM /730 AM
Arequipa
102.3 FM / 1170 AM
Chiclayo
96.7 FM / 870 AM
Huancayo
97.3 FM / 1140 AM
Trujillo
90.9 FM / 790 AM
Piura
103.3 FM / 920 AM
Cusco
93.3 FM
Cajamarca
100.7 FM / 1130 AM
La información más relevante de la actualidad al momento
Actualizado hace 0 minutos
Informes RPP
La inflación dejó de ser una preocupación
EP 1235 • 04:07
Entrevistas ADN
El Tribunal Constitucional no declaró inocente al prófugo Vladimir Cerrón, precisó abogado
EP 1768 • 17:57
El poder en tus manos
EP138 | INFORMES | ¿Cómo avanza la participación política de las mujeres en América latina?
EP 138 • 03:42

Esto es lo que ocurriría si cayéramos sobre un agujero negro supermasivo (y no tendría por qué ser fatal)

| Fuente: NASA

¿Cómo sería una caída sobre un agujero negro?, ¿qué observaríamos al acercarnos a él? Y aún más, ¿qué destino final nos tendría reservado este objeto tan fascinante?

Todas las noticias en tu celular
¡Únete aquí a nuestro canal de WhatsApp!

Ahora, gracias a unas potentes simulaciones realizadas por la NASA, tenemos una clara perspectiva visual de este fenómeno. Para ello, los investigadores utilizaron la supercomputadora Discover del Centro de Simulación Climática de la NASA, manejando una cantidad ingente de datos (alrededor de unos 10 terabytes, equivalente a 10 000 copias de la Enciclopedia Británica).

Para hacernos una idea de su alta velocidad de procesado, Discover completó estas simulaciones en unos cinco días, frente a las décadas de procesado que hubiera empleado un ordenador portátil al uso.

El agujero negro supermasivo

Estas simulaciones comienzan con una cámara situada a unos 640 millones de kilómetros de distancia, algo menos que la separación entre el Sol y el planeta Júpiter, para acercarse progresivamente a un agujero negro supermasivo de 4,3 millones de masas solares (similar al monstruo situado en el centro de la Vía Láctea, Sagitario A*).

Recreación del agujero negro supermasivo empleado en la simulación. Se puede apreciar claramente la nube plana de gas caliente (el disco de acreción) que rodea al agujero negro. Créditos: NASA’s Goddard Space Flight Center/J. Schnittman and B. Powell.

Recreación del agujero negro supermasivo empleado en la simulación. Se puede apreciar claramente la nube plana de gas caliente (el disco de acreción) que rodea al agujero negro. Créditos: NASA’s Goddard Space Flight Center/J. Schnittman and B. Powell.Fuente: Nasa

Durante su caída, un intrépido astronauta observaría con detalle una nube plana de gas caliente y brillante que rodea al agujero negro (y que le serviría como referencia visual): el disco de acreción.

Además, a medida que se va aproximando al horizonte de sucesos distinguiría anillos de luz brillantes (o anillos de fotones) formados por haces de luz que orbitan varias veces el agujero negro. Como colofón, un cielo estrellado, tal como sería visto desde la Tierra, completaría esta impresionante escena.

Acercándonos al anillo de fotones

Imaginemos entonces que nuestro astronauta salta sobre el agujero negro, grabando su caída con una cámara, mientras el resto de la tripulación observa la hazaña bastante alejada de la escena. En el mismo instante del salto, el astronauta y la tripulación tendrían sus relojes perfectamente sincronizados.

En su camino hacia lo desconocido, nuestro viajero iría ganando cada vez más velocidad (cercana incluso a la de la luz) y observaría el disco de acreción, los anillos de fotones y el cielo nocturno cada vez más distorsionados (formándose incluso múltiples imágenes, tal como se aprecia en la simulación).

Es más, el brillo del disco de acreción y las estrellas del fondo cósmico aumentarían considerablemente cuando el astronauta mirara en el sentido de la marcha, debido al conocido efecto Doppler.

En esta captura de la simulación, el astronauta se encuentra cerca del anillo de fotones (círculo externo en el cuadro azul), donde se aprecia un aumento considerable del brillo del disco de acreción por efecto Doppler (parte central de la imagen). También se observa un retraso de unos 12 minutos en el reloj del astronauta, en relación al tiempo que mediría su tripulación alejada de tal evento (cuadro rojo). Créditos: NASA’s Goddard Space Flight Center/J. Schnittman and B. Powell.

En esta captura de la simulación, el astronauta se encuentra cerca del anillo de fotones (círculo externo en el cuadro azul), donde se aprecia un aumento considerable del brillo del disco de acreción por efecto Doppler (parte central de la imagen). También se observa un retraso de unos 12 minutos en el reloj del astronauta, en relación al tiempo que mediría su tripulación alejada de tal evento (cuadro rojo). Créditos: NASA’s Goddard Space Flight Center/J. Schnittman and B. Powell.Fuente: NASA

Por otro lado, los relojes de la tripulación y el astronauta ya no estarían sincronizados, retrasándose unos 12 minutos el reloj de este último. Es decir, el tiempo transcurriría más lentamente para el astronauta que para sus compañeros.

La superficie de no retorno

“Abandonad toda esperanza, quienes aquí entráis”. Es la inscripción que Dante Alighieri describe en la puerta del infierno en la Divina Comedia, y que se ajusta muy bien a la definición del horizonte de sucesos de un agujero negro.

En efecto, unos 11 minutos después (en el reloj del astronauta), nuestro viajero atraviesa la superficie de no retorno. Aunque aún podría recibir imágenes del exterior, ninguna señal que enviara dentro del horizonte de sucesos llegaría a la tripulación.

El mero hecho de atravesar el horizonte de sucesos de un agujero negro supermasivo no supondría, en principio, ningún trauma para el astronauta. El problema vendría tal sólo unos 12,8 segundos después, cuando se produciría su muerte por espaguetificación. Esto es debido a que la atracción gravitacional en el extremo de un objeto más cercano al agujero negro es mucho más fuerte que la del otro extremo.

En este sentido, aunque puede parecer paradójico, un agujero negro estelar de unas 30 masas solares (como el recién descubierto Gaia BH3) sería aún más problemático que uno supermasivo, pues las fuerzas de marea serían más intensas y el astronauta sería destrozado antes incluso de que alcanzara el horizonte de sucesos.

En esta otra captura, el astronauta ha atravesado el horizonte de sucesos (círculo interior en el cuadro azul) recibiendo aún luz del exterior. Además, mientras que el reloj de nuestro viajero marca un tiempo de unas 3 horas, 15 minutos y 26 segundos (cuadro rojo), el reloj de la tripulación muestra un valor infinito (representado por esa sucesión de números nueve). Créditos: NASA’s Goddard Space Flight Center/J. Schnittman and B. Powell.

En esta otra captura, el astronauta ha atravesado el horizonte de sucesos (círculo interior en el cuadro azul) recibiendo aún luz del exterior. Además, mientras que el reloj de nuestro viajero marca un tiempo de unas 3 horas, 15 minutos y 26 segundos (cuadro rojo), el reloj de la tripulación muestra un valor infinito (representado por esa sucesión de números nueve). Créditos: NASA’s Goddard Space Flight Center/J. Schnittman and B. Powell.Fuente: NASA

¿Y qué observaría el resto de la tripulación? Simplemente diría que su atrevido compañero nunca ha atravesado la superficie de no retorno. En otras palabras, el astronauta tardaría un “tiempo infinito” (en el reloj de la tripulación) en cruzar el horizonte de sucesos.

Un vuelo rasante por el horizonte de sucesos

Pero también tendríamos buenas noticias, siempre y cuando fuera capaz de modificar la trayectoria inicial de su lanzamiento sobre el agujero negro. En tal caso, se aproximaría al horizonte de sucesos (sin atravesarlo) y luego escaparía a un lugar seguro.

Entonces, si nuestro astronauta volara en un viaje de ida y vuelta de unas 6 horas de duración (en su reloj), regresaría 36 minutos más joven que el resto de la tripulación. Esto se debe a que el tiempo pasa más lentamente cerca de una fuente gravitacional muy intensa y cuando se mueve cerca de la velocidad de la luz.

El rejuvenecido viajero sobreviviría, no sufriría un episodio tan traumático como el anterior pero, sin duda alguna, sería una experiencia apasionante.

The Conversation

The Conversation Rigor académico, oficio periodístico

The Conversation ofrece comentarios informados y debates sobre temas de relevancia global. También es un canal accesible para conocer los últimos avances y descubrimientos de las universidades y los centros de investigación.

Tags

Lo último en Espacio

Lo más leído

Suscribirte al boletín de tus noticias preferidas

Suscríbete a nuestros boletines y actualiza tus preferencias

Buzon
Al suscribirte, aceptas nuestras políticas de privacidad

Contenido promocionado

Taboola
SIGUIENTE NOTA