Buscar
RPP Noticias
Estás escuchando En vivo
 
00:00 / 00:00
Lima
89.7 FM /730 AM
Arequipa
102.3 FM / 1170 AM
Chiclayo
96.7 FM / 870 AM
Huancayo
97.3 FM / 1140 AM
Trujillo
90.9 FM / 790 AM
Piura
103.3 FM / 920 AM
Cusco
93.3 FM
Cajamarca
100.7 FM / 1130 AM
La información más relevante de la actualidad al momento
Actualizado hace 0 minutos
Entrevistas ADN
Abogada de Keiko Fujimori espera que no prospere apelación fiscal contra anulación de juicio por caso cócteles
EP 1775 • 18:03
Metadata
METADATA E264: CES 2025... ¿Es el año de Windows 11? Los lanzamientos de celulares que llegan este enero
EP 264 • 18:08
Letras en el tiempo
Historias con suerte
EP 1 • 41:11

Una nueva estrategia para frenar la acumulación de proteínas vinculada a la ELA y el alzhéimer

Representación de placas de proteína β-amiloide (visibles en marrón) en un cerebro afectado por alzhéimer.
Representación de placas de proteína β-amiloide (visibles en marrón) en un cerebro afectado por alzhéimer. | Fuente: NIH Image Gallery / Flickr

Una de las principales teorías sugiere que estas dolencias surgen debido a la acumulación de proteínas que se agrupan formando fibras de amiloide. Estas no son otra cosa que formaciones de proteínas mal plegadas, las cuales se organizan adoptando una disposición estable de láminas difícil de eliminar.

Todas las noticias en tu celular
¡Únete aquí a nuestro canal de WhatsApp!

Las enfermedades neurodegenerativas, como el alzhéimer o la esclerosis lateral amiotrófica (ELA), impactan a millones de personas en todo el mundo y representan un desafío global tanto en el ámbito de la salud como en la economía.

Una de las principales teorías sugiere que estas dolencias surgen debido a la acumulación de proteínas que se agrupan formando fibras de amiloide. Estas no son otra cosa que formaciones de proteínas mal plegadas, las cuales se organizan adoptando una disposición estable de láminas difícil de eliminar.

En la búsqueda de tratamientos efectivos, los científicos han enfocado sus esfuerzos en reducir la concentración de agregados de proteínas específicas (como Aβ3, FUS o TDP-43) que se encuentran presentes en pacientes con alzhéimer, ELA y demencia frontotemporal.

A la caza de las láminas

Pero ¿qué impulsa la formación de estas acumulaciones fatales? Se cree que regiones de proteínas ricas en un tipo de aminoácidos –llamados aromáticos– son las responsables de desencadenar la formación de láminas β, estructuras caracterizadas por el posicionamiento paralelo de dos cadenas de aminoácidos dentro de la misma proteína. Y en última instancia, las láminas dan lugar a las fibras de amiloide.

La comprensión del mecanismo molecular que genera la agregación de proteínas es, pues, de vital importancia para avanzar en la lucha contra las devastadoras enfermedades neurodegenerativas. En este empeño, un equipo de científicos de la Universidad Complutense de Madrid, la Universidad Politécnica de Madrid y la Universidad de Cambridge hemos llevado a cabo un estudio revolucionario utilizando la simulación computacional.

Nuestra investigación se ha centrado en desentrañar el complejo proceso de unión de estas proteínas y, lo que es más importante, en suprimir su agregación patológica mediante enfoques innovadores.

Las fibras más tóxicas

El enigma de las fibras de amiloide ha intrigado a la comunidad científica durante décadas. En los últimos años, se ha observado que los agregados de menor tamaño, conocidos como agregados intermedios, son especialmente tóxicos en comparación con los más grandes. Esto sugiere que comprender en detalle el mecanismo molecular de la nucleación (la agrupación paulatina de las moléculas hasta formar estructuras sólidas más complejas), el crecimiento y el envejecimiento de dichos agregados resulta esencial para abordar las enfermedades de manera más eficaz.

Tradicionalmente, las terapias contra las dolencias neurodegenerativas han apuntado a la eliminación de los agregados tóxicos mediante fagocitosis, un proceso en el que las células del sistema inmunológico “devoran” los agentes nocivos. Recientes enfoques se han basado también en inhibir su nucleación.

Nuestro trabajo ofrece una perspectiva alternativa: la inhibición de los mecanismos de agregación de las proteínas. Y para llevar a cabo esta estrategia, antes necesitábamos conocer profundamente los procesos moleculares que desencadenan la formación de fibras de amiloide.

Simulación a nivel átomico

Es aquí donde entra en juego la simulación computacional de dinámica molecular, una herramienta poderosa que permite recrear y analizar el comportamiento de las proteínas a nivel atómico. Este método nos permitió adentrarnos en los resortes que llevan a la formación de láminas β en proteínas que presentan regiones susceptibles de agregación.

Nuestro equipo desarrolló un algoritmo que emulaba la aparición de agregados de proteínas observados en pacientes con ELA. Gracias a él pudimos crear secuencias donde las regiones propensas a formar agregados fueron situadas en diferentes partes de la proteína. Así averiguamos que la ubicación de dichas zonas en los extremos de la proteína favorecía la agregación.

La diana fue la proteína FUS, vinculada a la ELA y la demencia frontotemporal. Sorprendentemente, logramos inhibir la formación de agregados simplemente recolocando distintas partes de la secuencia original de esa proteína.

En resumen, nuestro enfoque basado en simulaciones multiescala (combinando diferentes niveles de detalle o resolución) abre la puerta a desarrollar nuevas terapias contra las enfermedades neurodegenerativas. Con cada avance en la comprensión de los procesos moleculares detrás de la agregación de proteínas nos acercamos un poco más a la esperanza de encontrar una cura. O, al menos, tratamientos efectivos para mejorar la calidad de vida de los pacientes.The Conversation

María Martín Conde, Profesora Titular de Universidad, Universidad Politécnica de Madrid (UPM); Andrés Tejedor Reyes, Investigador Postdoctoral, University of Cambridge; Ignacio Sanchez Burgos, PhD Student, University of Cambridge; Jorge Ramírez García, Profesor Titular de Universidad, Ingeniería Química, Universidad Politécnica de Madrid (UPM); Jorge Rene Espinosa, Ramon y Cajal Fellow, Universidad Complutense de Madrid, and Samuel Blázquez Fernández, Investigador Predoctoral, Departamento de Química Física, UCM, Universidad Complutense de Madrid

Este artículo fue publicado originalmente en The Conversation. Lea el original.

Te recomendamos

The Conversation

The Conversation Rigor académico, oficio periodístico

The Conversation ofrece comentarios informados y debates sobre temas de relevancia global. También es un canal accesible para conocer los últimos avances y descubrimientos de las universidades y los centros de investigación.

Tags

Lo último en Salud

Lo más leído

Suscribirte al boletín de tus noticias preferidas

Suscríbete a nuestros boletines y actualiza tus preferencias

Buzon
Al suscribirte, aceptas nuestras políticas de privacidad

Contenido promocionado

Taboola
SIGUIENTE NOTA